
Protocol Solutions Group
3385 Scott Blvd. Santa Clara, CA 95054 Tel: +1/408.727.6600 Fax: +1/408.727.6622
LeCroy Protocol Analyzers

File-Based Decoding

User Manual
Manual Version 1.0

25 July, 2005

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Document Disclaimer
The information in this document has been carefully checked and is
believed to be reliable. However, no responsibility can be assumed for
inaccuracies that may not have been detected.

LeCroy reserves the right to revise the information in this document without
notice or penalty.

Trademarks and Servicemarks
CATC, FCTracer, SATracer, SASTracer, PETracer, PETracer ML,
PETracer EML, UWBTracer, UWBTracer MPI, BTTracer, Merlin,
Merlin II, USBTracer, USB Mobile, USB Mobile HS, UPAS, and BusEngine
are trademarks of LeCroy.

Microsoft, Windows, Windows 2000, and Windows XP are registered
trademarks of Microsoft Inc.

All other trademarks are property of their respective companies.

Copyright
Copyright © 2005, LeCroy; All Rights Reserved.

This document may be printed and reproduced without additional
permission, but all copies should contain this copyright notice.
ii

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
TABLE OF CONTENTS

Chapter 1: Introduction . 1
Chapter 2: Values. 3

Literals . 3
Integers . 3
Strings . 3
Lists . 4
Raw Bytes . 4
null . 4

Variables . 5
Global Variables . 5
Local Variables . 6

Constants . 6
Chapter 3: Expressions . 7
Chapter 4: Comments . 9
Chapter 5: Operators. 11

Operations . 11
Operator Precedence and Associativity . 11

Chapter 6: Keywords. 19
Chapter 7: Statements . 21

Expression Statements . 21
if Statements . 21
if-else Statements . 21
while Statements . 22
for Statements . 22
return Statements . 23
Compound Statements . 24

Chapter 8: Preprocessing . 27
Chapter 9: Context. 29
Chapter 10: Functions . 31
Chapter 11: Primitives. 33

General Primitives . 33
Call() . 33
Format() . 34
FormatEx() . 36
Resolve() . 38

Data Manipulation Primitives . 39
GetBitOffset() . 39
GetNBits() . 40
NextNBits() . 41
PeekNBits() . 42
 iii

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
List Manipulation Primitives . 43
RemoveAt() . 43
SetAt() . 44

Transaction Decoder Primitives . 45
Abort() . 45
AddEvent() . 46
Complete() . 47
Pending() . 48
Reject() . 49

Display Primitives . 50
AddCell() . 50
AddDataCell() . 52
AddSeparator() . 53
BeginCellBlock() . 54
EndCellBlock() . 57

Appendix A: PCI Express . 59
Modules . 59
Decoder Script Files . 59

cfg.dec . 60
io.dec . 61
mem.dec . 62
msg.dec . 63

Appendix B: Bluetooth. 65
Modules . 65

Module Functions . 65
Module Data . 66
Input Context Data . 67
iv

 v

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

LIST OF FIGURES

Figure 7-1: Execution of a for statement . 22
Figure 11-1: Example: Output for AddCell . 51
Figure 11-2: Example: Output for AddDataCell . 52
Figure 11-3: Example: Separator Cell . 53
Figure 11-4: Example: BeginCellBlock with Red Group Collapsed 55
Figure 11-5: Example: BeginCellBlock with Red Group Expanded, Blue Collapsed. . 56
Figure 11-6: Example: BeginCellBlock with Red and Blue Groups Expanded. 56

vi

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

LIST OF TABLES
Table 2.1: Examples of String Literals . 3
Table 2.2: Escape Sequences . 4
Table 5.1: Operator Precedence and Associativity . 12
Table 5.2: Operators . 14
Table 6.1: Keywords . 19
Table 11.1: Format Conversion Characters . 34

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Introduction
CHAPTER 1: INTRODUCTION
CATC Scripting Language (CSL) was developed to create scripts that would allow
users to perform file-based decoding with all CATC analyzers. CSL is used to edit
CATC Decode Scripting (CDS) files, which are pre-written decoder scripts
supplied by CATC. These script-based decoders can be modified by users or used
as-is. Additionally, users can create brand new CDS files.

This document includes the following analyzer-specific contents:

 Appendix A: PETracer Decoder Script Files (for the PETracer product).

Decoding scripts for analyzers are located in the /Scripts sub-directory below the
application directory. These scripts are tools to decode and display transactions.
Users can also add entirely new, customized decoders to fit their own specific
development needs. The analyzer application looks in the \Scripts directory and
automatically loads all of the .dec files that it finds. To prevent a particular decoder
from being loaded, change its extension to something other than .dec or move it out
of the \Scripts directory.

CSL is based on C language syntax, so anyone with a C programming background
will have no trouble learning CSL. The simple, yet powerful, structure of CSL also
enables less experienced users to easily acquire the basic knowledge needed to start
writing custom scripts.

Features of CATC Scripting Language
• Powerful -- provides a high-level API while simultaneously allowing

implementation of complex algorithms.

• Easy to learn and use -- has a simple but effective syntax.

• Self-contained -- needs no external tools to run scripts.

• Wide range of value types -- provides efficient and easy processing of data.

• Used to create built-in script-based decoders for analyzers.

• May be used to write custom decoders.

• General purpose -- is integrated in a number of CATC products.
 1

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Introduction
2

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Values
CHAPTER 2: VALUES
There are five value types that may be manipulated by a script: integers, strings,
lists, raw bytes, and null. CSL is not a strongly typed language. Value types need
not be pre-declared. Literals, variables and constants can take on any of the five
value types, and the types can be reassigned dynamically.

Literals
Literals are data that remain unchanged when the program is compiled. Literals are
a way of expressing hard-coded data in a script.

Integers
Integer literals represent numeric values with no fractions or decimal points. Hexa-
decimal, octal, decimal, and binary notation are supported:

Hexadecimal numbers must be preceded by 0x: 0x2A, 0x54, 0xFFFFFF01

Octal numbers must begin with 0: 0775, 017, 0400

Decimal numbers are written as usual: 24, 1256, 2

Binary numbers are denoted with 0b: 0b01101100, 0b01, 0b100000

Strings
String literals are used to represent text. A string consists of zero or more characters
and can include numbers, letters, spaces, and punctuation. An empty string ("")
contains no characters and evaluates to false in an expression, whereas a non-empty
string evaluates to true. Double quotes surround a string, and some standard
backslash (\) escape sequences are supported.

String Represented text

"Quote: \"This is a string
literal.\""

Quote: "This is a string
literal."

"256" 256 **Note that this does not represent the integer
256, but only the characters that make up the number.

"abcd!$%&*" abcd!$%&*

"June 26, 2001" June 26, 2001

"[1, 2, 3]" [1, 2, 3]

Table 2.1: Examples of String Literals
 3

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Values
Escape Sequences
These are the available escape sequences in CSL:

Lists
A list can hold zero or more pieces of data. A list that contains zero pieces of data
is called an empty list. An empty list evaluates to false when used in an expression,
whereas a non-empty list evaluates to true. List literals are expressed using the
square bracket ([]) delimiters. List elements can be of any type, including lists.

[1, 2, 3, 4]
[]
["one", 2, "three", [4, [5, [6]]]]

Raw Bytes
Raw binary values are used primarily for efficient access to packet payloads. A
literal notation is supported using single quotes:

'00112233445566778899AABBCCDDEEFF'

This represents an array of 16 bytes with values starting at 00 and ranging up to
0xFF. The values can only be hexadecimal digits. Each digit represents a nybble
(four bits), and if there are not an even number of nybbles specified, an implicit zero
is added to the first byte. For example:

'FFF'

is interpreted as
'0FFF'

null
null indicates an absence of valid data. The keyword null represents a literal
null value and evaluates to false when used in expressions.

result = null;

Character
Escape

Sequence Example Output

backslash \\ "This is a backslash: \\" This is a backslash: \

double quote \" "\"Quotes!\"" "Quotes!"

horizontal tab \t "Before tab\tAfter tab" Before tab After tab

newline \n "This is how\nto get a newline." This is how
to get a newline.

single quote \' "\'Single quote\'" 'Single quote'

Table 2.2: Escape Sequences
4

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Values
Variables
Variables are used to store information, or data, that can be modified. A variable
can be thought of as a container that holds a value.

All variables have names. Variable names must contain only alphanumeric charac-
ters and the underscore (_) character, and they cannot begin with a number. Some
possible variable names are

x
_NewValue
name_2

A variable is created when it is assigned a value. Variables can be of any value type,
and can change type with re-assignment. Values are assigned using the assignment
operator (=). The name of the variable goes on the left side of the operator, and the
value goes on the right:

x = [1, 2, 3]
New_value = x
name2 = "Smith"

If a variable is referenced before it is assigned a value, it evaluates to null.

There are two types of variables: global and local.

Global Variables
Global variables are defined outside of the scope of functions. Defining global
variables requires the use of the keyword set. Global variables are visible through-
out a file (and all files that it includes).

set Global = 10;

If an assignment in a function has a global as a left-hand value, a variable will not
be created, but the global variable will be changed. For example

set Global = 10;

Function()
{

Global = "cat";
Local = 20;

}

will create a local variable called Local, which will only be visible within the
function Function. Additionally, it will change the value of Global to "cat",
which will be visible to all functions. This will also change its value type from an
integer to a string.
 5

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Values
Local Variables
Local variables are not declared. Instead, they are created as needed. Local
variables are created either by being in a function's parameter list, or simply by
being assigned a value in a function body.

Function(Parameter)
{

Local = 20;
}

This function will create a local variable Parameter and a local variable Local,
which has an assigned value of 20.

Constants
A constant is similar to a variable, except that its value cannot be changed. Like
variables, constant names must contain only alphanumeric characters and the un-
derscore (_) character, and they cannot begin with a number.

Constants are declared similarly to global variables using the keyword const:
const CONSTANT = 20;

They can be assigned to any value type, but will generate an error if used in the left-
hand side of an assignment statement later on. For instance,

const constant_2 = 3;

Function()
{

constant_2 = 5;
}

will generate an error.

Declaring a constant with the same name as a global, or a global with the same name
as a constant, will also generate an error. Like globals, constants can only be
declared in the file scope.
6

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Expressions
CHAPTER 3: EXPRESSIONS
An expression is a statement that calculates a value. The simplest type of expression
is assignment:

x = 2

The expression x = 2 calculates 2 as the value of x.

All expressions contain operators, which are described in Chapter 5, Operators, on
page 11. The operators indicate how an expression should be evaluated in order to
arrive at its value. For example

x + 2

says to add 2 to x to find the value of the expression. Another example is

x > 2

which indicates that x is greater than 2. This is a Boolean expression, so it will
evaluate to either true or false. Therefore, if x = 3, then x > 2 will evaluate to
true; if x = 1, it will return false.

True is denoted by a non-zero integer (any integer except 0), and false is a zero
integer (0). True and false are also supported for lists (an empty list is false, while
all others are true), and strings (an empty string is false, while all others are true),
and null is considered false. However, all Boolean operators will result in integer
values.

select expression
The select expression selects the value to which it evaluates based on Boolean ex-
pressions. This is the format for a select expression:

select {
<expression1> : <statement1>
<expression2> : <statement2>
...

};

The expressions are evaluated in order, and the statement that is associated with the
first true expression is executed. That value is what the entire expression evaluates
to.

x = 10
Value_of_x = select {

x < 5 : "Less than 5";
x >= 5 : "Greater than or equal to 5";

};
 7

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Expressions
The above expression will evaluate to “Greater than or equal to 5” because the first
true expression is x >= 5. Note that a semicolon is required at the end of a select
expression because it is not a compound statement and can be used in an expression
context.

There is also a keyword default, which in effect always evaluates to true. An
example of its use is

Astring = select {
A == 1 : "one";
A == 2 : "two";
A == 3: "three";
A > 3 : "overflow";
default : null;

};

If none of the first four expressions evaluates to true, then default will be evaluat-
ed, returning a value of null for the entire expression.

select expressions can also be used to conditionally execute statements, similar to
C switch statements:

select {
A == 1 : DoSomething();
A == 2 : DoSomethingElse();
default: DoNothing();

};

In this case the appropriate function is called depending on the value of A, but the
evaluated result of the select expression is ignored.
8

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Comments
CHAPTER 4: COMMENTS
Comments may be inserted into scripts as a way of documenting what the script
does and how it does it. Comments are useful as a way to help others understand
how a particular script works. Additionally, comments can be used as an aid in
structuring the program.

Most comments in CSL begin with a hash mark (#) and finish at the end of the line.
The end of the line is indicated by pressing the Return or Enter key. Anything
contained inside the comment delimiters is ignored by the compiler. Thus,

x = 2;

is not considered part of the program. CSL supports only end-of-line comments of
this type (comments that can be used only at the end of a line or on their own line).
It's not possible to place a comment in the middle of a line using the hash mark.

Writing a multi-line comment requires either beginning each line with the hash
mark (and ending that line with a Return or Enter) or using a comment block.

A comment block begins with "/*" and end with "*/". Everything inside of the
comment block is ignored.

Example of a multi-line comment with comment delimiters on each line:
otherwise the compiler would try to interpret
anything outside of the delimiters
as part of the code.

Example of a multi-line comment block:
/*
The compiler ignores all contents
of the block comment.
*/

The most common use of comments is to explain the purpose of the code immedi-
ately following the comment. For example:

Add a profile if we got a server channel
if(rfChannel != "Failure")
{

result = SDPAddProfileServiceRecord(rfChannel,
"ObjectPush");

Trace("SDPAddProfileServiceRecord returned ", result, "\n");
}

 9

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

COMMENTS
10

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Operators
CHAPTER 5: OPERATORS
An operator is a symbol that represents an action, such as addition or subtraction,
that can be performed on data. Operators are used to manipulate data. The data
being manipulated are called operands. Literals, function calls, constants, and
variables can all serve as operands. For example, in the operation

x + 2

the variable x and the integer 2 are both operands, and + is the operator.

Operations
Operations can be performed on any combination of value types, but will result in
a null value if the operation is not defined. Defined operations are listed in the
Operand Types column of Table 5.2 on page 14. Any binary operation on a null and
a non-null value will result in the non-null value. For example, if

x = null

then
3 * x

will return a value of 3.

A binary operation is an operation that contains an operand on each side of the
operator, as in the preceding examples. An operation with only one operand is
called a unary operation, and requires the use of a unary operator. An example of a
unary operation is

!1

which uses the logical negation operator. It returns a value of 0.

Operator Precedence and Associativity
Operator rules of precedence and associativity determine in what order operands are
evaluated in expressions. Expressions with operators of higher precedence are
evaluated first. In the expression

4 + 9 * 5

the * operator has the highest precedence, so the multiplication is performed before
the addition. Therefore, the expression evaluates to 49.

The associative operator () is used to group parts of the expression, forcing those
parts to be evaluated first. In this way, the rules of precedence can be overridden.
 11

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Operators
For example,
(4 + 9) * 5

causes the addition to be performed before the multiplication, resulting in a value
of 65.

When operators of equal precedence occur in an expression, the operands are
evaluated according to the associativity of the operators. This means that if an op-
erator's associativity is left to right, then the operations will be done starting from
the left side of the expression. So, the expression

4 + 9 - 6 + 5

would evaluate to 12. However, if the associative operator is used to group a part or
parts of the expression, those parts are evaluated first. Therefore,

(4 + 9) - (6 + 5)

has a value of 2.

In Table 5.1, Operator Precedence and Associativity, the operators are listed in
order of precedence, from highest to lowest. Operators on the same line have equal
precedence, and their associativity is shown in the second column.

Operator Symbol Associativity

++ -- Right to left

[] () Left to right

~ ! sizeof head tail first next more
last prev

Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< > <= >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

Table 5.1: Operator Precedence and Associativity
12

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Operators
= += -= *= /= %= >>= <<= &=
^= |=

Right to left

Operator Symbol Associativity

Table 5.1: Operator Precedence and Associativity (Continued)
 13

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Operators
Operator
Symbol Description

Operand
Types

Result
Types Examples

Index Operator

[] Index or
subscript

Raw Bytes Integer Raw = '001122'
Raw[1] = 0x11

List Any List = [0, 1, 2, 3, [4, 5]]
List[2] = 2
List[4] = [4, 5]
List[4][1] = 5
*Note: if an indexed Raw value is assigned to any
value that is not a byte (> 255 or not an integer), the
variable will be promoted to a list before the
assignment is performed.

Associative Operator

() Associative Any Any (2 + 4) * 3 = 18
2 + (4 * 3) = 14

Arithmetic Operators

* Multiplication Integer-integer Integer 3 * 1 = 3

/ Division Integer-integer Integer 3 / 1 = 3

% Modulus Integer-integer Integer 3 % 1 = 0

+ Addition Integer-integer Integer 2 + 2 = 4

String-string String "one " + "two" = "one two"

Raw byte-raw byte Raw '001122' + '334455' =
'001122334455'

List-list List [1, 2] + [3, 4] = [1, 2, 3, 4]

Integer-list List 1 + [2, 3] = [1, 2, 3]

Integer-string String "number = " + 2 = "number = 2"
*Note: integer-string concatenation uses decimal
conversion.

String-list List "one" + ["two"] = ["one", "two"]

- Subtraction Integer-integer Integer 3 – 1 = 2

Increment and Decrement Operators

++ Increment Integer Integer a = 1
++a = 2

b = 1
b++ = 1
*Note that the value of b after execution is 2.

-- Decrement Integer Integer a = 2
--a = 1

b = 2
b-- = 2
*Note that the value of b after execution is 1.

Table 5.2: Operators
14

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Operators
Equality Operators

== Equal Integer-integer Integer 2 == 2

String-string Integer "three" == "three"

Raw byte-raw byte Integer '001122' == '001122'

List-list Integer [1, [2, 3]] == [1, [2, 3]]
*Note: equality operations on values of different
types will evaluate to false.

!= Not equal Integer-integer Integer 2 != 3

String-string Integer "three" != "four"

Raw byte-raw byte Integer '001122' != '334455'

List-list Integer [1, [2, 3]] != [1, [2, 4]]
*Note: equality operations on values of different
types will evaluate to false.

Relational Operators

< Less than Integer-integer Integer 1 < 2

String-string Integer "abc" < "def"

> Greater than Integer-integer Integer 2 > 1

String-string Integer "xyz" > "abc"

<= Less than or
equal

Integer-integer Integer 23 <= 27

String-string Integer "cat" <= "dog"

>= Greater than or
equal

Integer-integer Integer 2 >= 1

String-string Integer "sun" >= "moon"
*Note: relational operations on string values are
evaluated according to character order in the ASCII
table.

Logical Operators

! Negation All combinations
of types

Integer !0 = 1 !"cat" = 0
!9 = 0 !"" = 1

&& Logical AND All combinations
of types

Integer 1 && 1 = 1 1 && !"" = 1
1 && 0 = 0 1 && "cat" = 1

|| Logical OR All combinations
of types

Integer 1 || 1 = 1 0 || 0 = 0
1 || 0 = 1 "" || !"cat" = 0

Operator
Symbol Description

Operand
Types

Result
Types Examples

Table 5.2: Operators (Continued)
 15

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Operators
Bitwise Logical Operators

~ Bitwise
complement

Integer-integer Integer ~0b11111110 = 0b00000001

& Bitwise AND Integer-integer Integer 0b11111110 & 0b01010101 =
0b01010100

^ Bitwise
exclusive OR

Integer-integer Integer 0b11111110 ^ 0b01010101 =
0b10101011

| Bitwise
inclusive OR

Integer-integer Integer 0b11111110 | 0b01010101 =
0b11111111

Shift Operators

<< Left shift Integer-integer Integer 0b11111110 << 3 = 0b11110000

>> Right shift Integer-integer Integer 0b11111110 >> 1 = 0b01111111

Assignment Operators

= Assignment Any Any A = 1
B = C = A

+= Addition
assignment

Integer-integer Integer x = 1
x += 1 = 2

String-string String a = "one "
a += "two" = "one two"

Raw byte-raw byte Raw z = '001122'
z += '334455' = '001122334455'

List-list List x = [1, 2]
x += [3, 4] = [1, 2, 3, 4]

Integer-list List y = 1
y += [2, 3] = [1, 2, 3]

Integer-string String a = "number = "
a += 2 = "number = 2"
*Note: integer-string concatenation uses decimal
conversion.

String-list List s = "one"
s + ["two"] = ["one", "two"]

-= Subtraction
assignment

Integer-integer Integer y = 3
y –= 1 = 2

*= Multiplication
assignment

Integer-integer Integer x = 3
x *= 1 = 3

/= Division
assignment

Integer-integer Integer s = 3
s /= 1 = 3

%= Modulus
assignment

Integer-integer Integer y = 3
y %= 1 = 0

>>= Right shift
assignment

Integer-integer Integer b = 0b11111110
b >>= 1 = 0b01111111

<<= Left shift
assignment

Integer-integer Integer a = 0b11111110
a <<= 3 = 0b11111110000

Operator
Symbol Description

Operand
Types

Result
Types Examples

Table 5.2: Operators (Continued)
16

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Operators
Assignment Operators (continued)

&= Bitwise AND
assignment

Integer-integer Integer a = 0b11111110
a &= 0b01010101 = 0b01010100

^= Bitwise
exclusive OR
assignment

Integer-integer Integer e = 0b11111110
e ^= 0b01010101 = 0b10101011

|= Bitwise
inclusive OR
assignment

Integer-integer Integer i = 0b11111110
i |= 0b01010101 = 0b11111111

List Operators

sizeof() Number of
elements

Any Integer sizeof([1, 2, 3]) = 3
sizeof('0011223344') = 5
sizeof("string") = 6
sizeof(12) = 1
sizeof([1, [2, 3]]) = 2
*Note: the last example demonstrates that the
sizeof() operator returns the shallow count of a
complex list.

head() Head List Any head([1, 2, 3]) = 1
*Note: the Head of a list is the first item in the list.

tail() Tail List List tail([1, 2, 3]) = [2, 3]
*Note: the Tail of a list includes everything except
the Head.

first() Returns the first
element of the list
and resets the list
iterator to the
beginning of the
list

List Any list = [1, 2, 3];
for(item = first(list);
 more(list); item = next(list))
{
 ProcessItem(item);
}

next() Returns the next
element of the list
relative to the
previous position
of the list iterator

List Any list = [1, 2, 3];
for(item = first(list);
 more(list); item = next(list))
{
 ProcessItem(item);
}

more() Returns a non-
zero value if the
list iterator did not
reach the bounds
of the list

List Integer list = [1, 2, 3];
for(item = first(list);
 more(list); item = next(list))
{
 ProcessItem(item);
}

last() Returns the last
element of the list
and resets the
position of the list
iterator to the end
of the list

List Any list = [1, 2, 3];
for(item = last(list);
 more(list); item = prev(list))
{
 ProcessItem(item);
}

prev() Returns the
previous element
in the list relative
to the previous
position of the list
iterator

List Any list = [1, 2, 3];
for(item = last(list);
 more(list); item = prev(list))
{
 ProcessItem(item);
}

Operator
Symbol Description

Operand
Types

Result
Types Examples

Table 5.2: Operators (Continued)
 17

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Operators
18

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Keywords
CHAPTER 6: KEYWORDS
Keywords are reserved words that have special meanings within the language. They
cannot be used as names for variables, constants or functions.

In addition to the operators, the following are keywords in CSL:

Keyword Usage

select select expression

set define a global variable

const define a constant

return return statement

while while statement

for for statement

if if statement

else if-else statement

default select expression

null null value

in input context

out output context

Table 6.1: Keywords
 19

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Keywords
20

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Statements
CHAPTER 7: STATEMENTS
Statements are the building blocks of a program. A program is made up of list of
statements.

Seven kinds of statements are used in CSL: expression statements, if statements, if-
else statements, while statements, for statements, return statements, and compound
statements.

Expression Statements
An expression statement describes a value, variable, or function.

<expression>

Here are some examples of the different kinds of expression statements:

Value: x + 3;
Variable: x = 3;
Function: Trace (x + 3);

The variable expression statement is also called an assignment statement, because
it assigns a value to a variable.

if Statements
An if statement follows the form

if <expression> <statement>

For example,

if (3 && 3) Trace("True!");

will cause the program to evaluate whether the expression 3 && 3 is nonzero, or
True. It is, so the expression evaluates to True and the Trace statement will be
executed. On the other hand, the expression 3 && 0 is not nonzero, so it would
evaluate to False, and the statement wouldn't be executed.

if-else Statements
The form for an if-else statement is

if <expression> <statement1>
else <statement2>

The following code
if (3 - 3 || 2 - 2) Trace ("Yes");
else Trace ("No");
 21

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Statements
will cause “No” to be printed, because 3 - 3 || 2 - 2 will evaluate to False
(neither 3 - 3 nor 2 - 2 is nonzero).

while Statements
A while statement is written as

while <expression> <statement>

An example of this is
x = 2;
while (x < 5)
{

Trace (x, ", ");
x = x + 1;

}

The result of this would be
2, 3, 4,

for Statements
A for statement takes the form

for (<expression1>; <expression2>; <expression3>) <statement>

The first expression initializes, or sets, the starting value for x. It is executed one
time, before the loop begins. The second expression is a conditional expression. It
determines whether the loop will continue -- if it evaluates true, the function keeps
executing and proceeds to the statement; if it evaluates false, the loop ends. The
third expression is executed after every iteration of the statement.

The example
for (x = 2; x < 5; x = x + 1) Trace (x, "\n");

would output

Figure 7-1: Execution of a for statement
22

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Statements
2
3
4

The example above works out like this: the expression x = 2 is executed. The value
of x is passed to x < 5, resulting in 2 < 5. This evaluates to true, so the statement
Trace (x, "\n") is performed, causing 2 and a new line to print. Next, the third
expression is executed, and the value of x is increased to 3. Now, x < 5 is executed
again, and is again true, so the Trace statement is executed, causing 3 and a new
line to print. The third expression increases the value of x to 4; 4 < 5 is true, so 4
and a new line are printed by the Trace statement. Next, the value of x increases to
5. 5 < 5 is not true, so the loop ends.

return Statements
Every function returns a value, which is usually designated in a return statement.
A return statement returns the value of an expression to the calling environment.
It uses the following form:

return <expression>;

An example of a return statement and its calling environment is
Trace (HiThere());
...
HiThere()
{

return "Hi there";
}

The call to the primitive function Trace causes the function HiThere() to be
executed. HiThere() returns the string “Hi there” as its value. This value is passed
to the calling environment (Trace), resulting in this output:

Hi there

A return statement also causes a function to stop executing. Any statements that
come after the return statement are ignored, because return transfers control of
the program back to the calling environment. As a result,

Trace (HiThere());
...
HiThere()
{

a = "Hi there";
return a;
b = "Goodbye";
return b;

}

will output only
 23

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Statements
Hi there

because when return a; is encountered, execution of the function terminates, and
the second return statement (return b;) is never processed. However,

Trace (HiThere());
...
HiThere()
{

a = "Hi there";
b = "Goodbye";
if (3 != 3) return a;
else return b;

}

will output
Goodbye

because the if statement evaluates to false. This causes the first return statement
to be skipped. The function continues executing with the else statement, thereby
returning the value of b to be used as an argument to Trace.

Compound Statements
A compound statement, or statement block, is a group of one or more statements
that is treated as a single statement. A compound statement is always enclosed in
curly braces ({}). Each statement within the curly braces is followed by a semi-
colon; however, a semicolon is not used following the closing curly brace.

The syntax for a compound statement is
{

<first_statement>;
<second_statement>;
...
<last_statement>;

}

An example of a compound statement is
{

x = 2;
x + 3;

}

It's also possible to nest compound statements, like so:

{
x = 2;
{

y = 3;
24

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Statements
}
x + 3;

}

Compound statements can be used anywhere that any other kind of statement can
be used.

if (3 && 3)
{

result = "True!";
Trace(result);

}

Compound statements are required for function declarations and are commonly
used in if, if-else, while, and for statements.
 25

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Statements
26

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Preprocessing
CHAPTER 8: PREPROCESSING
The preprocessing command %include can be used to insert the contents of a file
into a script. It has the effect of copying and pasting the file into the code. Using
%include allows the user to create modular script files that can then be incorpo-
rated into a script. This way, commands can easily be located and reused.

The syntax for %include is this:
%include “includefile.inc”

The quotation marks around the filename are required, and by convention, the
included file has a .inc extension.

The filenames given in the include directive are always treated as being relative to
the current file being parsed. So, if a file is referenced via the preprocessing
command in a .dec file, and no path information is provided (%include
“file.inc”), the application will try to load the file from the current directory. If
there is no such file in the current directory, the application will try to load the file
from the \Scripts\Shared directory.

Files that are in a directory one level up from the current file can be referenced using
“..\file.inc”, and likewise, files one level down can be referenced using the
relative pathname (“directory\file.inc”). Last but not least, files can also be
referred to using a full pathname, such as
“C:\global_scripts\include\file.inc”.
 27

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Preprocessing
28

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Context
CHAPTER 9: CONTEXT
The context is the mechanism by which transaction data is passed in and out of the
scripts. There is an output context that is modified by the script, and there are
possibly multiple input contexts that the script will be invoked on separately.

A context serves two roles: It functions as a symbol table whose values are local to
a particular transaction, and it functions as an interface to the application.

Two keywords are used to reference symbols in the context: in and out. Dot
notation is used to specify a symbol within a context:

out.symbol = "abcd";
out.type = in.type;

The output context can be read and written to, but the input context can only be read.
Context symbols follow the same rules as local variables: they are created on
demand, and uninitialized symbols always evaluate to null.
 29

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Context
30

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Functions
CHAPTER 10: FUNCTIONS
A function is a named statement or a group of statements that are executed as one
unit. All functions have names. Function names must contain only alphanumeric
characters and the underscore (_) character, and they cannot begin with a number.

A function can have zero or more parameters, which are values that are passed to
the function statement(s). Parameters are also known as arguments. Value types are
not specified for the arguments or return values. Named arguments are local to the
function body, and functions can be called recursively.

The syntax for a function declaration is
name(<parameter1>, <parameter2>, ...)
{

<statements>
}

The syntax to call a function is
name(<parameter1>, <parameter2>, ...)

So, for example, a function named add can be declared like this:
add(x, y)
{

return x + y;
}

and called this way:
add(5, 6);

This would result in a return value of 11.

Every function returns a value. The return value is usually specified using a return
statement, but if no return statement is specified, the return value will be the value
of the last statement executed.

Arguments are not checked for appropriate value types or number of arguments
when a function is called. If a function is called with fewer arguments than were
defined, the specified arguments are assigned, and the remaining arguments are
assigned to null. If a function is called with more arguments than were defined, the
extra arguments are ignored. For example, if the function add is called with just
one argument

add(1);

the parameter x will be assigned to 1, and the parameter y will be assigned to null,
resulting in a return value of 1. But if add is called with more than two arguments

add(1, 2, 3);
 31

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Functions
x will be assigned to 1, y to 2, and 3 will be ignored, resulting in a return value of 3.

All parameters are passed by value, not by reference, and can be changed in the
function body without affecting the values that were passed in. For instance, the
function

add_1(x, y)
{

x = 2;
y = 3;
return x + y;

}

reassigns parameter values within the statements. So,
a = 10;
b = 20;
add_1(a, b);

will have a return value of 5, but the values of a and b won't be changed.

The scope of a function is the file in which it is defined (as well as included files),
with the exception of primitive functions, whose scopes are global.

Calls to undefined functions are legal, but will always evaluate to null and result in
a compiler warning.
32

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
CHAPTER 11: PRIMITIVES
Primitive functions are called similarly to regular functions, but they are imple-
mented outside of the language. Some primitives support multiple types for certain
arguments, but in general, if an argument of the wrong type is supplied, the function
will return null.

General Primitives

Call()
Call(<function_name string>, <arg_list list>)

Support

Supported by all LeCroy analyzers.

Return value

Same as that of the function that is called.

Comments

Calls a function whose name matches the function_name parameter. All scope
rules apply normally. Spaces in the function_name parameter are interpreted as
the ‘_’ (underscore) character since function names cannot contain spaces.

Example
Call("Format", ["the number is %d", 10]);

is equivalent to:

Format("the number is %d", 10);

Parameter Meaning Default Value Comments

function_name string

arg_list list Used as the list of parameters in the function call.
 33

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
Format()
Format (<format string>, <value string or integer>)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Format is used to control the way that arguments will print out. The format string
may contain conversion specifications that affect the way in which the arguments
in the value string are returned. Format conversion characters, flag characters, and
field width modifiers are used to define the conversion specifications.

Example
Format("0x%02X", 20);

would yield the string 0x14.

Format can only handle one value at a time, so
Format("%d %d", 20, 30);

would not work properly. Furthermore, types that do not match what is specified in
the format string will yield unpredictable results.

Format Conversion Characters
These are the format conversion characters used in CSL:

Parameter Meaning Default Value Comments

format string

value string or integer

Code Type Output

c Integer Character

d Integer Signed decimal integer.

i Integer Signed decimal integer

o Integer Unsigned octal integer

u Integer Unsigned decimal integer

x Integer Unsigned hexadecimal integer, using "abcdef."

X Integer Unsigned hexadecimal integer, using "ABCDEF."

Table 11.1: Format Conversion Characters
34

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
A conversion specification begins with a percent sign (%) and ends with a conver-
sion character. The following optional items can be included, in order, between the
% and the conversion character to further control argument formatting:

• Flag characters are used to further specify the formatting. There are five flag characters:

• A minus sign (-) will cause an argument to be left-aligned in its field. Without the
minus sign, the default position of the argument is right-aligned.

• A plus sign will insert a plus sign (+) before a positive signed integer. This only works
with the conversion characters d and i.

• A space will insert a space before a positive signed integer. This only works with the
conversion characters d and i. If both a space and a plus sign are used, the space flag
will be ignored.

• A hash mark (#) will prepend a 0 to an octal number when used with the conversion
character o. If # is used with x or X, it will prepend 0x or 0X to a hexadecimal
number.

• A zero (0) will pad the field with zeros instead of with spaces.

• Field width specification is a positive integer that defines the field width, in spaces, of the
converted argument. If the number of characters in the argument is smaller than the field
width, then the field is padded with spaces. If the argument has more characters than the
field width has spaces, then the field will expand to accommodate the argument.

s String String

Code Type Output

Table 11.1: Format Conversion Characters
 35

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
FormatEx()
FormatEx (<format_string string>, <arg_list list>)

Support

Supported by all LeCroy analyzers.

Return value

Formatted string.

Comments

FormatEx writes data to a string.

Example
str = "String";
i = 12;
hex_i = 0xAABBCCDD;
...
formatted_str = FormatEx("%s, %d, 0x%08X", str, i, hex_i);
formatted_str = "String, 12, 0xAABBCCDD"

Format Conversion Characters
These are the format conversion characters used in CSL:

Parameter Meaning Default Value Comments

format_string string

arg_list list Used as the list of parameters in the function call.

Code Type Output

c Integer Character

d Integer Signed decimal integer.

i Integer Signed decimal integer

o Integer Unsigned octal integer

u Integer Unsigned decimal integer

x Integer Unsigned hexadecimal integer, using "abcdef."

X Integer Unsigned hexadecimal integer, using "ABCDEF."

s String String

Table 11.2: Format Conversion Characters
36

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
A conversion specification begins with a percent sign (%) and ends with a conver-
sion character. The following optional items can be included, in order, between the
% and the conversion character to further control argument formatting:

• Flag characters are used to further specify the formatting. There are five flag characters:

• A minus sign (-) will cause an argument to be left-aligned in its field. Without the
minus sign, the default position of the argument is right-aligned.

• A plus sign will insert a plus sign (+) before a positive signed integer. This only works
with the conversion characters d and i.

• A space will insert a space before a positive signed integer. This only works with the
conversion characters d and i. If both a space and a plus sign are used, the space flag
will be ignored.

• A hash mark (#) will prepend a 0 to an octal number when used with the conversion
character o. If # is used with x or X, it will prepend 0x or 0X to a hexadecimal
number.

• A zero (0) will pad the field with zeros instead of with spaces.

• Field width specification is a positive integer that defines the field width, in spaces, of the
converted argument. If the number of characters in the argument is smaller than the field
width, then the field is padded with spaces. If the argument has more characters than the
field width has spaces, then the field will expand to accommodate the argument.
 37

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
Resolve()
Resolve(<symbol_name string>)

Support

Supported by all LeCroy analyzers.

Return value

The value of the symbol. Returns null if the symbol is not found.

Comments
Attempts to resolve the value of a symbol. Can resolve global, constant and local symbols. Spaces
in the symbol_name parameter are interpreted as the ‘_’ (underscore) character since symbol
names cannot contain spaces.

Example
a = Resolve("symbol");

is equivalent to:
a = symbol;

Parameter Meaning Default Value Comments

symbol_name string
38

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
Data Manipulation Primitives

GetBitOffset()
GetBitOffset()

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments
Returns the current bit offset that is used in NextNBits or PeekNBits.

Example
raw = 'F0F0';# 1111000011110000 binary
result1 = GetNBits (raw, 2, 4);
result2 = PeekNBits(5);
result3 = NextNBits(2);
Trace ("Offset = ", GetBitOffset());

The example generates this Trace output:
Offset = D

Parameter Meaning Default Value Comments

N/A
 39

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
GetNBits()
GetNBits (<bit_source list or raw>, <bit_offset
integer>, <bit_count integer>)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Reads bit_count bits from bit_source starting at bit_offset. Will return null if
bit_offset + bit_count exceeds the number of bits in bit_source. If bit_count
is 32 or less, the result will be returned as an integer. Otherwise, the result will be
returned in a list format that is the same as the input format. GetNBits also sets up
the bit data source and global bit offset used by NextNBits and PeekNBits. Note
that bits are indexed starting at bit 0.

Example
raw = 'F0F0'; # 1111000011110000 binary
result = GetNBits (raw, 2, 4);
Trace ("result = ", result);

The output would be
result = C # The result is given in hexadecimal. The
result in binary is 1100.

In the call to GetNBits: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

Parameter Meaning Default Value Comments

bit_source list, raw, or
integer

Can be an integer value (4 bytes) or a list of inte-
gers that are interpreted as bytes.

bit_offset integer Index of bit to
start reading

from

bit_count integer Number of
bits to read
40

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
NextNBits()
NextNBits (<bit_count integer>)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Reads bit_count bits from the data source specified in the last call to GetNBits,
starting after the last bit that the previous call to GetNBits or NextNBits returned.
If called without a previous call to GetNBits, the result is undefined. Note that bits
are indexed starting at bit 0.

Example
raw = 'F0F0';# 1111000011110000 binary
result1 = GetNBits (raw, 2, 4);
result2 = NextNBits(5);
result3 = NextNBits(2);
Trace ("result1 = ", result1, " result2 = ", result2, " result3
= ", result3);

This will generate this trace output:
result1 = C result2 = 7 result3 = 2

In the call to GetNBits: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

In the first call to NextNBits: starting at bit 6, reads 5 bits (00111), and returns the
value 0x7.

In the second call to NextNBits: starting at bit 11 (= 6 + 5), reads 2 bits (10), and
returns the value 0x2.

Parameter Meaning Default Value Comments

bit_count integer
 41

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
PeekNBits()
PeekNBits(<bit_count integer>)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Reads bit_count bits from the data source. The difference between PeekNBits
and NextNBits is that PeekNBits does not advance the global bit offset.
PeekNBits can be used to make decisions about how to parse the next fields without
affecting subsequent calls to NextNBits. If PeekNBits is called without a prior call
to GetNBits, the result is undefined. Note that bits are indexed starting at bit 0.

Example
raw = 'F0F0';# 1111000011110000 binary
result1 = GetNBits (raw, 2, 4);
result2 = PeekNBits(5);
result3 = NextNBits(2);
Trace ("result1 = ", result1, " result2 = ", result2, " result3
= ", result3);

This will generate this Trace output:
result1 = C result2 = 7 result3 = 0

In the call to GetNBits: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

In the call to PeekNBits: starting at bit 6, reads 5 bits (00111), and returns the value
0x7.

In the call to NextNBits: starting at bit 6, reads 2 bits (00), and returns the value
0x0.

Parameter Meaning Default Value Comments

bit_count integer
42

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
List Manipulation Primitives

RemoveAt()
RemoveAt(<list_object list, index integer>)

Support

Supported by all LeCroy analyzers.

Return value

Removed element if the specified index is less than or equal to the list upper bound,
otherwise null value is returned.

Comments

This function removes an element in a list at a given index.

Example
list = [0, 1, 2, 3];
list += 4;
list += 5;
SetAt(list, 8, 15, 0xAA); # now list = [0, 1, 2, 3, 4, 5,
0xAA, 0xAA, 15];
removed_Item = RemoveAt(list, 6);
removed_Item = RemoveAt(list, 6); # now list = [0, 1, 2,
3, 4, 5, 15];
removed_Item = 0xAA

Parameter Meaning Default Value Comments

list_object list

index integer
 43

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
SetAt()
RemoveAt(<list_object list, index integer>)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

This function sets up an element in a list at a given index and fills up the list with
new elements.

Example
list = [0, 1, 2, 3];
list += 4;
list += 5;
SetAt(list, 8, 15, 0xAA); # now list = [0, 1, 2, 3, 4, 5,
0xAA, 0xAA, 15];
...
list = [0,1, 2, 3];
SetAt(list, 6, 15); # now list = [0,1, 2, 3, null, null, 15];

Parameter Meaning Default Value Comments

list_object list

index integer
44

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
Transaction Decoder Primitives

Abort()
Abort()

Support

Supported by Bluetooth and Firewire analyzers only.

Return value

An integer that should be passed back to the application unchanged.

Comments

Called when an input context renders the currently pending transaction done, but is
not itself a member of that transaction. An example would be an input transaction
that represents some sort of reset condition that renders all pending transactions
invalid. The input transaction is not consumed by this action and will go on to be
considered for other pending transactions.

Example
if (IsReset)
return Abort();

Parameter Meaning Default Value Comments

N/A
 45

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
AddEvent()
AddEvent(<Group string>, <Value string>)

Support

Supported by Bluetooth and Firewire analyzers only.

Return value

None.

Comments

Events are used for transaction searching and for transaction summary. This
function is only effective when called during the ProcessData() phase of
decoding. Event groups and values are stored globally for transaction levels and
new ones are created as they are encountered. Each transaction contains informa-
tion as to which events were associated with it.

Example
AddEvent("DataLength", Format("%d",
out.DataLength));

Parameter Meaning Default Value Comments

Group string The name of
the group

Corresponds to the name of a field that might be
encountered while decoding.

Value string A value that
will be

associated
with the group

Corresponds to a field value that might be
encountered while parsing.
46

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
Complete()
Complete()

Support

Supported by Bluetooth and Firewire analyzers only.

Return value

An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into a transaction, and that the transaction is complete. The return value
of this function should be passed back to the application from the ProcessData
function. This function could be used to associate the input context with the output
context.

Example
if (done)
return Complete();

Parameter Meaning Default Value Comments
 47

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
Pending()
Pending()

Support

Supported by Bluetooth and Firewire analyzers only.

Return value

An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into a transaction, but that the transaction still requires further input to be
complete. This function could be used to associate input contexts with the output
context. The return value of this function should be returned to the application in
the ProcessData function.

Example
if (done)
return Complete();
else return Pending();

Parameter Meaning Default Value Comments
48

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
Reject()
Reject()

Support

Supported by Bluetooth and Firewire analyzers only.

Return value

An integer that should be passed back to the application unchanged.

Comments

Called when it is decided that the input context does not meet the criteria for being
a part of the current transaction. The output context should not be modified before
this decision is made. The return value of this function should be returned by the
ProcessData function.

Example
if (UnknownValue)
return Reject();

Parameter Meaning Default Value Comments
 49

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
Display Primitives

AddCell()
AddCell(<name string>, <value string>, <description
string or null>, <color integer or list>,
<additional_info any>)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Adds a display cell to the current output context. Cells are displayed in the order
that they are added. The name and value strings are displayed directly in the cell.

Example
Create a regular cell named Normal with a value "Cell" and tool
tip "Normal cell":

AddCell("Normal", "Value1", "Normal cell");

Parameter Meaning Default Value Comments

name string Displays in the name field of the cell.

value string Displays in the value field of the cell.

description string or null Displays in tool tip.

color integer or list If not speci-
fied, a default
color is used

Color can be specified as either a packed color
value in an integer, or as an array of RGB values
ranging from 0-255. Displays in the name field
of the cell.

additional_info any Used to create special cells or to modify cell
attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:
_COLLAPSED
_ERROR
_EXPANDED
[_FIXEDWIDTH, w]
_HIDDEN
_MONOCOLOR
_MONOFIELD
_SHOWN (default)
_WARNING
50

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
Use the _MONOCOLOR value in the additional_info parameter to
create a cell with a color value of 0x881122 in both the name and
value fields:

AddCell("MonoColor", "Value2", "MonoColor cell", 0x881122,
_MONOCOLOR);

Use the _MONOFIELD value to create a cell with only a name
field:

AddCell("MonoField", "Value3", "MonoField cell", [255, 200,
200], _MONOFIELD);

Use the _ERROR value to create a cell with a red value field:

AddCell("Error", "Value4", "Error cell", 0xcc1155, _ERROR);

Use the _WARNING value to create a cell with a yellow value
field:

AddCell("Warning", "Value5", "Warning cell", 0x00BB22, _WARNING
);

Use the [_FIXEDWIDTH, w] value to create a cell with a fixed
width of 20 in conjuction with the error value to create a fixed
width cell with a red value field:

AddCell("Fixed Width 20", "Value6", "Fixed Width and Error
cell", 0x001122, [_FIXEDWIDTH, 20], _ERROR);

The output of the example is:

Figure 11-1: Example: Output for AddCell
 51

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
AddDataCell()
AddDataCell(<data_value raw, list or integer>,
<additional_info any>, ...)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Creates an expandable/collapsible cell for viewing raw data such as data payloads.
Data can be raw bytes, an integer, or a list. If an integer is used, it will be interpreted
as 4 bytes of data. Specifying _BYTES or _DWORDS in an additional_info field
will force data to be interpreted as bytes or quadlets. _COLLAPSED, _EXPANDED,
_HIDDEN and _SHOWN are all interpreted the same is in a regular AddCell call.

Example
Creates a data cell with 2 dwords (32-bit integers) of data.

AddDataCell('0123456789ABCDEF', _DWORDS);

Creates a data cell with 4 bytes. Integer data values are
always interpreted as 32 bits of data.

AddDataCell(0x11223344, _BYTES);

The output of the example is:

Parameter Meaning Default Value Comments

data_value raw, list, or
integer

Interpreted the same way as GetNBits inter-
prets data_source

additional_info any Used to create special cells or to modify cell
attributes. Possible values are:
_BYTES
_COLLAPSED
_DWORDS
_EXPANDED
_HIDDEN
_SHOWN (default)

Figure 11-2: Example: Output for AddDataCell
52

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
AddSeparator()
AddSeparator(<additional_info any>, ...)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Creates a separator cell. _COLLAPSED, _EXPANDED, _HIDDEN, and _SHOWN are all in-
terpreted the same is in a regular AddCell call.

Example
AddCell("Stuff", "Things");

AddSeparator adds a space between the previous and subsequent
cells.

AddSeparator();

AddCell("More stuff", "More things");

The output of the example is:

Parameter Meaning Default Value Comments

additional_info any Used to create special cells or to modify cell
attributes. The values are predefined constants.
Possible values are:
_COLLAPSED
_EXPANDED
_HIDDEN
_SHOWN (default)

Figure 11-3: Example: Separator Cell
 53

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
BeginCellBlock()
BeginCellBlock(<name string>, <value string>,
<description string or null>, <color integer or list>,
<additional_info any>)

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments

Begins a cell block and adds a block header cell. This is a special cell that can be
collapsed and expanded. The collapsed/expanded state of this cell affects cells in
the group according to their _COLLAPSED, _EXPANDED attributes. All calls to
AddCell after a call to BeginCellBlock() will put the new cells into this group
until a call to EndCellBlock is made.

Cell blocks can be nested.

Parameter Meaning Default Value Comments

name string Displays in the name field of the cell.

value string Displays in the value field of the cell.

description string or null Displays in tool tip.

color integer or list If not speci-
fied, a default
color is used

Color can be specified as either a packed color
value in an integer, or as an array of RGB values
ranging from 0-255. Displays in the name field
of the cell.

additional_info any Used to create special cells or to modify cell
attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:
[_BLOCKNAME, x]
_COLLAPSED
_ERROR
_EXPANDED
[_FIXEDWIDTH, w]
_HIDDEN
_MONOCOLOR
_MONOFIELD
_SHOWN (default)
_WARNING
54

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
Example
Begin the 'red' group. For clarity these cells will be red:

BeginCellBlock("Red Group", null, null, 0x0000ff, _MONOFIELD);

This cell will be displayed when the red group is in the
expanded state:

AddCell("Red is", "Expanded", null, 0x0000ff, _EXPANDED);

This cell will be displayed when the red group is collapsed:

AddCell("Red is", "Collapsed", null, 0x0000ff, _COLLAPSED);

This begins the nested blue group. Nothing in the blue group
will be displayed unless the red group is expanded:

BeginCellBlock("Blue Group", null, null, 0xff0000, _MONOFIELD,
_EXPANDED, [_BLOCKNAME, "BlockName"]);

This cell is only displayed when the blue group is visible and
expanded:

AddCell("Blue is", "Expanded", null, 0xff0000, _EXPANDED);

This cell is also only displayed when the blue group is visible
and expanded:

AddCell("Blue", "Too", null, 0xff0000, _EXPANDED);

This cell is only displayed when the blue group is visible and
collapsed:

AddCell("Blue is", "Collapsed", null, 0xff0000, _COLLAPSED);

This ends the blue group.

EndCellBlock();

Cells with the _SHOWN attribute are always displayed. This is
the default:

AddCell("Always", "Shown", null, 0x0000ff, _SHOWN);

This cell will never be displayed. In a real script this would
be driven by a variable:

AddCell("Never", "Shown", null, 0x0000ff, _HIDDEN);

This ends the red group.

EndCellBlock();

The output of the example is:

Figure 11-4: Example: Output for
BeginCellBlock with Red Group

Collapsed
 55

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
Figure 11-5: Example: Output for BeginCellBlock with Red Group
Expanded and Blue Group Collapsed

Figure 11-6: Example: Output for BeginCellBlock with Red Group
Expanded and Blue Group Expanded
56

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Primitives
EndCellBlock()
EndCellBlock()

Support

Supported by all LeCroy analyzers.

Return value

None.

Comments
Ends a cell block that was started with BeginCellBlock().

Example

See BeginCellBlock().

See BeginCellBlock()

Parameter Meaning Default Value Comments
 57

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Primitives
58

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
PCI Express
APPENDIX A: PCI EXPRESS
Note: This information in the appendix is specific to the PETracer analyzer. It
is divided into two parts: Modules and Decoder Script Files.

Modules
Modules are a collection of functions and data dedicated to decoding a certain type
of transaction. Each module consists of one primary file (.dec), and possibly several
included files (.inc)

Module Function
A module function is used as an entry-point into a decoding module. It is called by
the application and used each time a transaction needs to be displayed.

ProcessData()
PETracer supports only the ProcessData() function. It is called with each packet
of the appropriate type with input context filled with data from that packet. It reports
the amount of processed data through the out.Decoded variable.

Decoder Script Files
PETracer includes the four script files in the \Scripts directory. You can use
these files as is or modify them.

To activate a script file, go to the last line in the file (for example, in io.dec, the
line reads: “set OutputType =”__IO”) and remove the underscore. For example:

set OutputType =”__IO”

Change to:

set OutputType =”IO”
 59

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

PCI Express
Following is a list and brief summary of the decoder script files. Following sections
describe each file in greater detail.

cfg.dec
Description: cfg.dec is a configuration data script decoder.

Input Data Fields
in.Data- data block to decode
in.DataLength length of data block in bytes
in.PrepareFldsForDlg- if not 0 means that script should prepare decoded fields for

presenting them in a special dialog.
in.Type- request type (_TLP_TYPE_ID_CFGRD_0, _TLP_TYPE_ID_CFGRD_1,

_TLP_TYPE_ID_CFGWR_0 or
_TLP_TYPE_ID_CFGWR_1)

in.FirstByteEnabled- index of first enabled byte in data block
in.EnabledByteCount- number of enabled bytes in data block
in.DeviceID- device ID
in.Register- configuration space address
in.TC - TC (Traffic class) field of TLP header
in.Tag - Tag field of TLP header
in.RequesterID- RequesterID field of TLP header
in.Attr - Attr field of TLP header
in.Length- Length field of TLP header
in.TD - TD (Transport Digest) field of TLP header
in.EP - EP (End-to-end Poisoning) field of TLP header

Output Data Fields
out.Decoded- amount of data (in bytes) has been decoded

Decoder Script File Function

cfg.dec Configuration data script decoder.

io.dec IO data script decoder.

mem.dec Memory data script decoder.

msg.dec Message data script decoder.
60

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
PCI Express
io.dec
Description: io.dec is an IO data script decoder.

Input Data Fields
in.Data- data block to decode
in.DataLength- length of data block in bytes

in.PrepareFldsForDlg- if not 0 means that script should prepare decoded fields for
presenting them in a special dialog.

in.Type- request type (_TLP_TYPE_ID_IORD or _TLP_TYPE_ID_IOWR)
in.FirstByteEnabled- index of first enabled byte in data block
in.EnabledByteCount- number of enabled bytes in data block

in.Address- address
in.TC - TC (Traffic class) field of TLP header

in.Tag - Tag field of TLP header

in.RequesterID- RequesterID field of TLP header

in.Attr - Attr field of TLP header

in.Length- Length field of TLP header

in.TD - TD (Transport Digest) field of TLP header

in.EP - EP (End-to-end Poisoning) field of TLP header

Output Data Fields
out.Decoded - amount of data (in bytes) has been decoded

set OutputType = "__IO"; # remove __ to use the script
 61

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

PCI Express
mem.dec
Description: mem.dec is a memory data script decoder.

Input Data Fields

in.Data- data block to decode
in.DataLength- length of data block in bytes

in.PrepareFldsForDlg- if not 0 means that script should prepare decoded fields for
presenting them in a special dialog.

in.Type- request type (_TLP_TYPE_ID_MRD32, _TLP_TYPE_ID_MRDLK32,
_TLP_TYPE_ID_MWR32, _TLP_TYPE_ID_MRD64,

_TLP_TYPE_ID_MRDLK64 or
_TLP_TYPE_ID_MWR64)

in.FirstByteEnabled - index of first enabled byte in data block
in.EnabledByteCount - number of enabled bytes in data block

in.AddressLo- address[31:0]
in.AddressHi- address[63:32] (only for _TLP_TYPE_ID_MRD64,

_TLP_TYPE_ID_MRDLK64 or
_TLP_TYPE_ID_MWR64)

in.TC - TC (Traffic class) field of TLP header

in.Tag - Tag field of TLP header

in.RequesterID- RequesterID field of TLP header

in.Attr - Attr field of TLP header

in.Length- Length field of TLP header

in.TD - TD (Transport Digest) field of TLP header

in.EP - EP (End-to-end Poisoning) field of TLP header

Output Data Fields
out.Decoded- amount of data (in bytes) has been decoded
62

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
PCI Express
msg.dec
Description: msg.dec is a message data script decoder.

Input Data Fields
in.Data- data block to decode
in.DataLength- length of data block in bytes

in.PrepareFldsForDlg- if not 0 means that script should prepare decoded fields for
presenting them in a special dialog.

in.Type- request type (_TLP_TYPE_ID_IORD or _TLP_TYPE_ID_IOWR)
in.FirstByteEnabled- index of first enabled byte in data block
in.EnabledByteCount- number of enabled bytes in data block

in.MessageCode- message code
 (_TLP_MSGCODE_ASSERT_INTA
 _TLP_MSGCODE_ASSERT_INTB
 _TLP_MSGCODE_ASSERT_INTC
 _TLP_MSGCODE_ASSERT_INTD
 _TLP_MSGCODE_DEASSERT_INTA
 _TLP_MSGCODE_DEASSERT_INTB
 _TLP_MSGCODE_DEASSERT_INTC
 _TLP_MSGCODE_DEASSERT_INTD
 _TLP_MSGCODE_PM_ACTIVESTATENAK
 _TLP_MSGCODE_PM_PME
 _TLP_MSGCODE_PM_TURNOFF
 _TLP_MSGCODE_PM_TOACK
 _TLP_MSGCODE_ERR_COR
 _TLP_MSGCODE_ERR_NONFATAL
 _TLP_MSGCODE_ERR_FATAL
 _TLP_MSGCODE_UNLOCK
 _TLP_MSGCODE_SLOTPOWERLIMIT
 _TLP_MSGCODE_VENDOR0
 _TLP_MSGCODE_VENDOR1
 _TLP_MSGCODE_HP_ATTN_IND_ON
 _TLP_MSGCODE_HP_ATTN_IND_BLINK
 _TLP_MSGCODE_HP_ATTN_IND_OFF
 _TLP_MSGCODE_HP_POWER_IND_ON
 _TLP_MSGCODE_HP_POWER_IND_BLINK
 _TLP_MSGCODE_HP_POWER_IND_OFF
 _TLP_MSGCODE_HP_ATTN_BTN_PRESSED)
in.MessageRouting- message routing
 63

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

PCI Express
(_TLP_MSGROUTE_TOROOTCOMPLEX,
_TLP_MSGROUTE_BYADDRESS,
_TLP_MSGROUTE_BYID,
_TLP_MSGROUTE_FROMROOTCOMPLEX,
_TLP_MSGROUTE_LOCALTERMRECEIVER,
_TLP_MSGROUTE_GATHERTOROOTCOMPLEX,
_TLP_MSGROUTE_RESERVED1TERMRECEIVER or
_TLP_MSGROUTE_RESERVED2TERMRECEIVER)

in.AddressLo- address [31:00] (if MessageRouting is
_TLP_MSGROUTE_BYADDRESS)

in.AddressHi- address [63:32] (if MessageRouting is
_TLP_MSGROUTE_BYADDRESS)

in.DeviceID- device ID (if MessageRouting is _TLP_MSGROUTE_BYID)
in.TC - TC (Traffic class) field of TLP header

in.Tag - Tag field of TLP header

in.RequesterID- RequesterID field of TLP header

in.Attr - Attr field of TLP header

in.Length- Length field of TLP header

in.TD - TD (Transport Digest) field of TLP header

in.EP - EP (End-to-end Poisoning) field of TLP header

Output Data Fields
out.Decoded- amount of data (in bytes) has been decoded
64

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Bluetooth
APPENDIX B: BLUETOOTH
Note: The information in this appendix is specific to the Bluetooth analyzer.

Modules
Modules are a collection of functions and global data dedicated to decoding a
certain type of transaction. Each module consists of one primary file (.dec), and
possibly several included files (.inc).

Module Functions
Three functions are used as entry-points into a decoding module. They are called
by the application and are used both in the initial transaction decoding phase, and
each time that a transaction needs to be displayed.

ProcessData()
Called repeatedly with input contexts representing transactions of the specified
input types. Decides if input transaction is a member of this transaction, or if it
begins a new transaction. This function will be called first using incomplete output
transactions. If the input transaction is not accepted into any of the pending trans-
actions, it will be called with an empty output transaction to see if it starts a new
transaction.

CollectData()
Called with each input transaction that was previously accepted by the function
ProcessData. Generates all output context data that would be required for input
into a higher level transaction.

BuildCellList()
Called with the output context generated by the call to CollectData, and no input
context. This function is responsible for adding display cells based on the data
collected by CollectData.

Note that there is some flexibility in the use of these functions. For example, if it is
easier for a particular protocol to build cells in CollectData, cells could be
generated there, and BuildCellList could be left empty. Another approach would
be to have ProcessData do everything (generate output data, and build cell lists)
and then implement CollectData as a pass-thru to ProcessData. This will be less
efficient in the decoding phase but may reduce some repetition of code. These
decisions are dependent on the protocol to be decoded.
 65

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Bluetooth
Module Data
There are several standard global variables that should be defined in a module
which are queried by the application to figure out what the module is supposed to
do.

ModuleType
Required. A string describing the role of the script. Currently, only Transaction
Decoder is valid.

Example
set ModuleType = "Transaction Decoder";

Note: The following applies to transaction decoding:

When a script is first invoked, it is given an input context that corresponds to a
packet or transaction that is a candidate for being a part of a larger transaction.
The output context is initially empty. It is the script's job to examine the input
context and decide if it qualifies for membership in the type of transaction that
the script was designed to decode. If it qualifies, the appropriate values will be
decoded and put in the output context symbol table, and if the transaction is
complete, it will be done. If the transaction is not complete, the script will
indicate this to the application based on its return value, and will be invoked
again with the same output context, but a new input context. The script then
must decide if this new input context is a member of the transaction, and keep
doing this until the transaction is complete.

In order to accomplish all this, state information should be placed in the output
context. It should be possible to use the output context of one transaction as an
input context to another transaction.

OutputType
Required. A string label describing the output of the script. Example : AVC
Transaction

Example
set OutputType = "BNEP";

InputType
Required. A string label describing the input to the script. Input and output types
should be matched by the application in order to decide which modules to invoke
on which contexts.

Example
set InputType = "L2CAP";
66

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Bluetooth
LevelName
Optional. A string that names this decoder.

Example
set LevelName = "BNEP Transactions";

DecoderDesc
Optional. A string that describes this decoder. Displays as a toolbar icon tool tip.

Example
set DecoderDesc = "View Bluetooth Encapsulation Protocol Layer";

Icon
Optional. File name of an icon to display on the toolbar. Must be a 19x19 pixel
bitmap file.

Example
set Icon = "bitmap.bmp";

Input Context Data
The Merlin application decodes several layers of Bluetooth protocol and provides
input context as follows:

Packet Level
in.Data - data block (packet payload) (null if no data in
packet)

in.DataLength - length of packet payload (null if no data in packet)

in.ScoData - SCO data block (voice) (null if no SCO data in packet)

in.ScoDataLength - length of SCO data (null if no SCO data in packet)

in.Slave - 1 - Slave/ 0 - Master

in.AmAddr - Am address

in.Type - type of packet

in.Flow - packet flow bit

in.Seqn - packet seqn bit

in.L_CH - packet L_CH value
 67

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL

Bluetooth
L2CAP
in.Data - L2CAP data block

in.DataLength - length of data block

in.Slave - 1 - Slave/ 0 - Master

in.AmAddr - Am address

in.Cid - L2CAP CID value

RFCOMM
in.Data - RFCOMM data block

in.DataLength - length of data block

in.Slave - 1 - Slave/ 0 - Master

in.AmAddr - Am address

in.Dlci - RFCOMM dlci value

HDLC and PPP
in.Data - HDLC data block

in.DataLength - length of data block

in.Protocol - PPP protocol value

in.Slave - 1-Slave/ 0-\Master

in.AmAddr - Am address
68

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
How to Contact LeCroy

Limited Hardware Warranty
So long as you or your authorized
representative ("you" or "your"), fully
complete and return the registration card
provided with the applicable hardware product
or peripheral hardware products (each a
"Product") within fifteen days of the date of receipt from LeCroy or one of its
authorized representatives, LeCroy warrants that the Product will be free from
defects in materials and workmanship for a period of three years (the "Warranty
Period"). You may also complete your registration form via the internet by visiting
http://www.lecroy.com/registerscope/. The Warranty Period commences on the
earlier of the date of delivery by LeCroy of a Product to a common carrier for
shipment to you or to LeCroy's authorized representative from whom you purchase
the Product.

What this Warranty Does Not Cover
This warranty does not cover damage due to external causes including accident,
damage during shipment after delivery to a common carrier by LeCroy, abuse,
misuse, problems with electrical power, including power surges and outages,
servicing not authorized by LeCroy, usage or operation not in accordance with
Product instructions, failure to perform required preventive maintenance, software
related problems (whether or not provided by LeCroy), problems caused by use of
accessories, parts or components not supplied by LeCroy, Products that have been
modified or altered by someone other than LeCroy, Products with missing or altered
service tags or serial numbers, and Products for which LeCroy has not received
payment in full.

Type of Service Contact
Call for technical support… US and Canada: 1 (800) 909-2282

Worldwide: 1 (408) 727-6600
Fax your questions… Worldwide: 1 (408) 727-6622
Write a letter… LeCroy

Protocol Solutions Group
Customer Support
3385 Scott Blvd.
Santa Clara, CA 95054

USA
Send e-mail… support@CATC.com
Visit LeCroy’s web site… http://www.lecroy.com/
 69

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
Coverage During Warranty Period
During the Warranty Period, LeCroy or its authorized representatives will repair or
replace Products, at LeCroy's sole discretion, covered under this limited warranty
that are returned directly to LeCroy's facility or through LeCroy's authorized
representatives.

How to Obtain Warranty Service
To request warranty service, you must complete and return the registration card or
register via the internet within the fifteen day period described above and report
your covered warranty claim by contacting LeCroy Technical Support or its
authorized representative.

LeCroy Technical Support can be reached at 800-909-7112 or via email at
support@catc.com. You may also refer to LeCroy's website at
http://www.lecroy.com for more information on how to contact an authorized
representative in your region. If warranty service is required, LeCroy or its
authorized representative will issue a Return Material Authorization Number. You
must ship the Product back to LeCroy or its authorized representative, in its original
or equivalent packaging, prepay shipping charges, and insure the shipment or
accept the risk of loss or damage during shipment. LeCroy must receive the Product
prior to expiration of the Warranty Period for the repair(s) to be covered. LeCroy
or its authorized representative will thereafter ship the repaired or replacement
Product to you freight prepaid by LeCroy if you are located in the continental
United States. Shipments made outside the continental United States will be sent
freight collect.

Please remove any peripheral accessories or parts before you ship the Product.
LeCroy does not accept liability for lost or damaged peripheral accessories, data or
software.

LeCroy owns all parts removed from Products it repairs. LeCroy may use new
and/or reconditioned parts, at its sole discretion, made by various manufacturers in
performing warranty repairs. If LeCroy repairs or replaces a Product, the Warranty
Period for the Product is not extended.

If LeCroy evaluates and determines there is "no trouble found" in any Product
returned or that the returned Product is not eligible for warranty coverage, LeCroy
will inform you of its determination. If you thereafter request LeCroy to repair the
Product, such labor and service shall be performed under the terms and conditions
70

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
of LeCroy's then current repair policy. If you chose not to have the Product repaired
by LeCroy, you agree to pay LeCroy for the cost to return the Product to you and
that LeCroy may require payment in advance of shipment.
General Provisions
THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU
MAY HAVE ADDITIONAL RIGHTS THAT VARY BY JURISDICTION.
LECROY'S RESPONSIBILITY FOR DEFECTS IN MATERIALS AND
WORKMANSHIP IS LIMITED TO REPAIR AND REPLACEMENT AS SET
FORTH IN THIS LIMITED WARRANTY STATEMENT. EXCEPT AS
EXPRESSLY STATED IN THIS WARRANTY STATEMENT, LECROY
DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES FOR ANY
PRODUCT INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF AND CONDITIONS OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES THAT
MAY ARISE FROM ANY COURSE OF DEALING, COURSE OF
PERFORMANCE OR TRADE USAGE. SOME JURISDICTIONS MAY NOT
ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS,
SO THE PRECEDING LIMITATION MAY NOT APPLY TO YOU.

LECROY DOES NOT ACCEPT LIABILITY BEYOND THE REMEDIES SET
FORTH IN THIS LIMITED WARRANTY STATEMENT OR FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES INCLUDING, WITHOUT
LIMITATION, ANY LIABILITY FOR THIRD PARTY CLAIMS AGAINST
YOU FOR DAMAGES, PRODUCTS NOT BEING AVAILABLE FOR USE, OR
FOR LOST DATA OR SOFTWARE. LECROY'S LIABILITY TO YOU MAY
NOT EXCEED THE AMOUNT YOU PAID FOR THE PRODUCT THAT IS THE
SUBJECT OF A CLAIM. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE PRECEDING EXCLUSION OR LIMITATION MAY NOT
APPLY TO YOU.

The limited warranty on a Product may be transferred for the remaining term if the
then current owner transfers ownership of the Product and notifies LeCroy of the
transfer. You may notify LeCroy of the transfer by writing to Technical Support at
LeCroy, 3385 Scott Blvd., Santa Clara, CA 95054 USA or by email at:
support@catc.com. Please include the transferring owner's name and address, the
name and address of the new owner, the date of transfer, and the Product serial
number.
 71

LECROY PROTOCOL ANALYZERS FILE-BASED DECODING USER MANUAL
72

	LeCroy File-Based Decoding Manual
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	Features of CATC Scripting Language

	Chapter 2: Values
	Literals
	Integers
	Strings
	Escape Sequences

	Lists
	Raw Bytes
	null

	Variables
	Global Variables
	Local Variables

	Constants

	Chapter 3: Expressions
	select expression

	Chapter 4: Contents
	Chapter 5: Operators
	Operations
	Operator Precedence and Associativity

	Chapter 6: Keywords
	Chapter 7: Statements
	Expression Statements
	if Statements
	if-else Statements
	while Statements
	for Statements
	return Statements
	Compound Statements

	Chapter 8: Preprocessing
	Chapter 9: Context
	Chapter 10: Functions
	Chapter 11: Primitives
	General Primitives
	Call()
	Format()
	Format Conversion Characters

	FormatEx()
	Format Conversion Characters

	Resolve()

	Data Manipulation Primitives
	GetBitOffset()
	GetNBits()
	NextNBits()
	PeekNBits()

	List Manipulation Primitives
	RemoveAt()
	SetAt()

	Transaction Decoder Primitives
	Abort()
	AddEvent()
	Complete()
	Pending()
	Reject()

	Display Primitives
	AddCell()
	AddDataCell()
	AddSeparator()
	BeginCellBlock()
	EndCellBlock()

	Appendix A: PCI Express
	Modules
	Module Function
	ProcessData()

	Decoder Script Files
	cfg.dec
	Input Data Fields
	Output Data Fields

	io.dec
	Input Data Fields
	Output Data Fields

	mem.dec
	Input Data Fields
	Output Data Fields

	msg.dec
	Input Data Fields
	Output Data Fields

	Appendix B: Bluetooth
	Modules
	Module Functions
	ProcessData()
	CollectData()
	BuildCellList()

	Module Data
	ModuleType
	OutputType
	InputType
	LevelName
	DecoderDesc
	Icon

	Input Context Data
	Packet Level
	L2CAP
	RFCOMM
	HDLC and PPP

